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Graph Neural Networks:
A Review of Methods and Applications

Jie Zhou∗, Ganqu Cui∗, Zhengyan Zhang∗, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng Li,
Maosong Sun

Abstract—Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling
physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require a model to learn from
graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like
the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning
models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing
between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information
from its neighborhood with arbitrary depth. Although the primitive GNNs have been found difficult to train for a fixed point, recent
advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In
recent years, systems based on variants of graph neural networks such as graph convolutional network (GCN), graph attention network
(GAT), gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this
survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and
propose four open problems for future research.

Index Terms—Deep Learning, Graph Neural Network

F

1 INTRODUCTION

Graphs are a kind of data structure which models a set
of objects (nodes) and their relationships (edges). Recently,
researches of analyzing graphs with machine learning have
been receiving more and more attention because of the
great expressive power of graphs, i.e. graphs can be used
as denotation of a large number of systems across various
areas including social science (social networks) [1], [2], nat-
ural science (physical systems [3], [4] and protein-protein
interaction networks [5]), knowledge graphs [6] and many
other research areas [7]. As a unique non-Euclidean data
structure for machine learning, graph analysis focuses on
node classification, link prediction, and clustering. Graph
neural networks (GNNs) are deep learning based methods
that operate on graph domain. Due to its convincing per-
formance and high interpretability, GNN has been a widely
applied graph analysis method recently. In the following
paragraphs, we will illustrate the fundamental motivations
of graph neural networks.

The first motivation of GNNs roots in convolutional
neural networks (CNNs) [8]. CNNs have the ability to
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extract multi-scale localized spatial features and compose
them to construct highly expressive representations, which
led to breakthroughs in almost all machine learning areas
and started the new era of deep learning [9]. As we are
going deeper into CNNs and graphs, we found the keys
of CNNs: local connection, shared weights and the use of
multi-layer [9]. These are also of great importance in solving
problems of graph domain, because 1) graphs are the most
typical locally connected structure. 2) shared weights reduce
the computational cost compared with traditional spectral
graph theory [10]. 3) multi-layer structure is the key to deal
with hierarchical patterns, which captures the features of
various sizes. However, CNNs can only operate on regular
Euclidean data like images (2D grid) and text (1D sequence)
while these data structures can be regarded as instances of
graphs. Therefore, it is straightforward to think of finding
the generalization of CNNs to graphs. As shown in Fig. 1, it
is hard to define localized convolutional filters and pooling
operators, which hinders the transformation of CNN from
Euclidean domain to non-Euclidean domain.

Fig. 1. Left: image in Euclidean space. Right: graph in non-Euclidean
space
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The other motivation comes from graph embedding [11]–
[15], which learns to represent graph nodes, edges or sub-
graphs in low-dimensional vectors. In the field of graph
analysis, traditional machine learning approaches usually
rely on hand engineered features and are limited by its
inflexibility and high cost. Following the idea of represen-
tation learning and the success of word embedding [16],
DeepWalk [17], which is regarded as the first graph em-
bedding method based on representation learning, applies
SkipGram model [16] on the generated random walks.
Similar approaches such as node2vec [18], LINE [19] and
TADW [20] also achieved breakthroughs. However, these
methods suffer two severe drawbacks [12]. First, no param-
eters are shared between nodes in the encoder, which leads
to computationally inefficiency, since it means the number
of parameters grows linearly with the number of nodes.
Second, the direct embedding methods lack the ability of
generalization, which means they cannot deal with dynamic
graphs or generalize to new graphs.

Based on CNNs and graph embedding, graph neural
networks (GNNs) are proposed to collectively aggregate in-
formation from graph structure. Thus they can model input
and/or output consisting of elements and their dependency.
Further, graph neural network can simultaneously model
the diffusion process on the graph with the RNN kernel.

In the following part, we explain the fundamental rea-
sons why graph neural networks are worth investigating.
Firstly, the standard neural networks like CNNs and RNNs
cannot handle the graph input properly in that they stack
the feature of nodes by a specific order. However, there
isn’t a natural order of nodes in the graph. To present a
graph completely, we should traverse all the possible orders
as the input of the model like CNNs and RNNs, which is
very redundant when computing. To solve this problem,
GNNs propagate on each node respectively, ignoring the
input order of nodes. In other words, the output of GNNs
is invariant for the input order of nodes. Secondly, an
edge in a graph represents the information of dependency
between two nodes. In the standard neural networks, the
dependency information is just regarded as the feature of
nodes. However, GNNs can do propagation guided by
the graph structure instead of using it as part of features.
Generally, GNNs update the hidden state of nodes by a
weighted sum of the states of their neighborhood. Thirdly,
reasoning is a very important research topic for high-level
artificial intelligence and the reasoning process in human
brain is almost based on the graph which is extracted from
daily experience. The standard neural networks have shown
the ability to generate synthetic images and documents by
learning the distribution of data while they still cannot learn
the reasoning graph from large experimental data. However,
GNNs explore to generate the graph from non-structural
data like scene pictures and story documents, which can be
a powerful neural model for further high-level AI. Recently,
it has been proved that an untrained GNN with a simple
architecture also perform well [21].

There exist several comprehensive reviews on graph
neural networks. [22] proposed a unified framework,
MoNet, to generalize CNN architectures to non-Euclidean

domains (graphs and manifolds) and the framework could
generalize several spectral methods on graphs [2], [23] as
well as some models on manifolds [24], [25]. [26] provides a
thorough review of geometric deep learning, which presents
its problems, difficulties, solutions, applications and future
directions. [22] and [26] focus on generalizing convolutions
to graphs or manifolds, however in this paper we only focus
on problems defined on graphs and we also investigate
other mechanisms used in graph neural networks such as
gate mechanism, attention mechanism and skip connection.
[27] proposed the message passing neural network (MPNN)
which could generalize several graph neural network and
graph convolutional network approaches. [28] proposed the
non-local neural network (NLNN) which unifies several
“self-attention”-style methods. However, the model is not
explicitly defined on graphs in the original paper. Focusing
on specific application domains, [27] and [28] only give
examples of how to generalize other models using their
framework and they do not provide a review over other
graph neural network models. [29] provides a review over
graph attention models. [30] proposed the graph network
(GN) framework which has a strong capability to generalize
other models. However, the graph network model is highly
abstract and [30] only gives a rough classification of the
applications.

[31] and [32] are the most up-to-date survey papers
on GNNs and they mainly focus on models of GNN. [32]
categorizes GNNs into five groups: graph convolutional
networks, graph attention networks, graph auto-encoders,
graph generative networks and graph spatial-temporal net-
works. Our paper has a different taxonomy with [32]. We
introduce graph convolutional networks and graph atten-
tion networks in Section 2.2.2 as they contribute to the
propagation step. We present the graph spatial-temporal
networks in Section 2.2.1 as the models are usually used
on dynamic graphs. We introduce graph auto-encoders in
Sec 2.2.3 as they are trained in an unsupervised fashion.
And finally, we introduce graph generative networks in
applications of graph generation (see Section 3.3.1).

In this paper, we provide a thorough review of differ-
ent graph neural network models as well as a systematic
taxonomy of the applications. To summarize, this paper
presents an extensive survey of graph neural networks with
the following contributions.

• We provide a detailed review over existing graph
neural network models. We introduce the original
model, its variants and several general frameworks.
We examine various models in this area and provide
a unified representation to present different propaga-
tion steps in different models. One can easily make a
distinction between different models using our repre-
sentation by recognizing corresponding aggregators
and updaters.

• We systematically categorize the applications and
divide the applications into structural scenarios, non-
structural scenarios and other scenarios. We present
several major applications and their corresponding
methods for each scenario.

• We propose four open problems for future research.
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Graph neural networks suffer from over-smoothing
and scaling problems. There are still no effective
methods for dealing with dynamic graphs as well
as modeling non-structural sensory data. We provide
a thorough analysis of each problem and propose
future research directions.

The rest of this survey is organized as follows. In Sec. 2,
we introduce various models in the graph neural network
family. We first introduce the original framework and its
limitations. Then we present its variants that try to release
the limitations. And finally, we introduce several general
frameworks proposed recently. In Sec. 3, we will introduce
several major applications of graph neural networks applied
to structural scenarios, non-structural scenarios and other
scenarios. In Sec. 4, we propose four open problems of
graph neural networks as well as several future research
directions. And finally, we conclude the survey in Sec. 5.

2 MODELS

Graph neural networks are useful tools on non-Euclidean
structures and there are various methods proposed in the
literature trying to improve the model’s capability.

In Sec 2.1, we describe the original graph neural net-
works proposed in [33]. We also list the limitations of
the original GNN in representation capability and train-
ing efficiency. In Sec 2.2 we introduce several variants of
graph neural networks aiming to release the limitations.
These variants operate on graphs with different types, uti-
lize different propagation functions and advanced training
methods. In Sec 2.3 we present three general frameworks
which could generalize and extend several lines of work.
In detail, the message passing neural network (MPNN) [27]
unifies various graph neural network and graph convolu-
tional network approaches; the non-local neural network
(NLNN) [28] unifies several “self-attention”-style methods.
And the graph network(GN) [30] could generalize almost
every graph neural network variants mentioned in this
paper.

Before going further into different sections, we give
the notations that will be used throughout the paper. The
detailed descriptions of the notations could be found in
Table 1.

2.1 Graph Neural Networks

The concept of graph neural network (GNN) was first
proposed in [33], which extended existing neural networks
for processing the data represented in graph domains. In a
graph, each node is naturally defined by its features and
the related nodes. The target of GNN is to learn a state
embedding hv ∈ Rs which contains the information of
neighborhood for each node. The state embedding hv is an
s-dimension vector of node v and can be used to produce
an output ov such as the node label. Let f be a parametric
function, called local transition function, that is shared among
all nodes and updates the node state according to the input
neighborhood. And let g be the local output function that

TABLE 1
Notations used in this paper.

Notations Descriptions
Rm m-dimensional Euclidean space
a,a,A Scalar, vector, matrix
AT Matrix transpose
IN Identity matrix of dimension N
gθ ? x Convolution of gθ and x
N Number of nodes in the graph
Nv Number of nodes in the graph
Ne Number of edges in the graph
Nv Neighborhood set of node v
atv Vector a of node v at time step t
hv Hidden state of node v
htv Hidden state of node v at time step t
evw Features of edge from node v to w
ek Features of edge with label k
otv Output of node v
Wi,Ui,
Wo,Uo, ...

Matrices for computing i,o, ...

bi,bo, ... Vectors for computing i,o, ...
σ The logistic sigmoid function
ρ An alternative non-linear function
tanh The hyperbolic tangent function
LeakyReLU The LeakyReLU function
� Element-wise multiplication operation
‖ Vector concatenation

describes how the output is produced. Then, hv and ov are
defined as follows:

hv = f(xv,xco[v],hne[v],xne[v]) (1)

ov = g(hv,xv) (2)

where xv,xco[v],hne[v],xne[v] are the features of v, the fea-
tures of its edges, the states, and the features of the nodes in
the neighborhood of v, respectively.

Let H, O, X, and XN be the vectors constructed by
stacking all the states, all the outputs, all the features, and
all the node features, respectively. Then we have a compact
form as:

H = F (H,X) (3)

O = G(H,XN ) (4)

where F , the global transition function, and G, the global
output function are stacked versions of f and g for all nodes
in a graph, respectively. The value of H is the fixed point of
Eq. 3 and is uniquely defined with the assumption that F is
a contraction map.

With the suggestion of Banach’s fixed point theorem [34],
GNN uses the following classic iterative scheme for comput-
ing the state:

Ht+1 = F (Ht,X) (5)

where Ht denotes the t-th iteration of H. The dynamical
system Eq. 5 converges exponentially fast to the solution of
Eq. 3 for any initial value H(0). Note that the computations
described in f and g can be interpreted as the feedforward
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neural networks.

When we have the framework of GNN, the next question
is how to learn the parameters of f and g. With the target
information (tv for a specific node) for the supervision, the
loss can be written as follow:

loss =

p∑
i=1

(ti − oi) (6)

where p is the number of supervised nodes. The learning
algorithm is based on a gradient-descent strategy and is
composed of the following steps.

• The states htv are iteratively updated by Eq. 1 until
a time T . They approach the fixed point solution of
Eq. 3: H(T ) ≈ H.

• The gradient of weights W is computed from the
loss.

• The weights W are updated according to the gradi-
ent computed in the last step.

Limitations Though experimental results showed that
GNN is a powerful architecture for modeling structural
data, there are still several limitations of the original GNN.
Firstly, it is inefficient to update the hidden states of nodes
iteratively for the fixed point. If relaxing the assumption
of the fixed point, we can design a multi-layer GNN to
get a stable representation of node and its neighborhood.
Secondly, GNN uses the same parameters in the iteration
while most popular neural networks use different parame-
ters in different layers, which serve as a hierarchical feature
extraction method. Moreover, the update of node hidden
states is a sequential process which can benefit from the
RNN kernel like GRU and LSTM. Thirdly, there are also
some informative features on the edges which cannot be
effectively modeled in the original GNN. For example, the
edges in the knowledge graph have the type of relations and
the message propagation through different edges should
be different according to their types. Besides, how to learn
the hidden states of edges is also an important problem.
Lastly, it is unsuitable to use the fixed points if we focus on
the representation of nodes instead of graphs because the
distribution of representation in the fixed point will be much
smooth in value and less informative for distinguishing each
node.

2.2 Variants of Graph Neural Networks

In this subsection, we present several variants of graph
neural networks. Sec 2.2.1 focuses on variants operating
on different graph types. These variants extend the rep-
resentation capability of the original model. Sec 2.2.2 lists
several modifications (convolution, gate mechanism, atten-
tion mechanism and skip connection) on the propagation
step and these models could learn representations with
higher quality. Sec 2.2.3 describes variants using advanced
training methods which improve the training efficiency. An
overview of different variants of graph neural networks
could be found in Fig. 2.

2.2.1 Graph Types

In the original GNN [33], the input graph consists of nodes
with label information and undirected edges, which is the
simplest graph format. However, there are many variants of
graphs in the world. In this subsection, we will introduce
some methods designed to model different kinds of graphs.

Directed Graphs The first variant of graph is directed
graph. Undirected edge which can be treated as two di-
rected edges shows that there is a relation between two
nodes. However, directed edges can bring more information
than undirected edges. For example, in a knowledge graph
where the edge starts from the head entity and ends at
the tail entity, the head entity is the parent class of the
tail entity, which suggests we should treat the information
propagation process from parent classes and child classes
differently. DGP [35] uses two kinds of weight matrix, Wp

and Wc, to incorporate more precise structural information.
The propagation rule is shown as follows:

Ht = σ(D−1p Apσ(D
−1
c AcH

t−1Wc)Wp) (7)

where D−1p Ap, D−1c Ac are the normalized adjacency matrix
for parents and children respectively.

Heterogeneous Graphs The second variant of graph
is heterogeneous graph, where there are several kinds of
nodes. The simplest way to process heterogeneous graph
is to convert the type of each node to a one-hot feature
vector which is concatenated with the original feature.
What’s more, GraphInception [36] introduces the concept of
metapath into the propagation on the heterogeneous graph.
With metapath, we can group the neighbors according to
their node types and distances. For each neighbor group,
GraphInception treats it as a sub-graph in a homogeneous
graph to do propagation and concatenates the propagation
results from different homogeneous graphs to do a collective
node representation. Recently, [37] proposed the heteroge-
neous graph attention network (HAN) which utilizes node-
level and semantic-level attentions. And the model have
the ability to consider node importance and meta-paths
simultaneously.

Graphs with Edge Information In another variant of
graph, each edge has additional information like the weight
or the type of the edge. We list two ways to handle this
kind of graphs: Firstly, we can convert the graph to a
bipartite graph where the original edges also become nodes
and one original edge is split into two new edges which
means there are two new edges between the edge node
and begin/end nodes. The encoder of G2S [38] uses the
following aggregation function for neighbors:

htv = ρ(
1

|Nv|
∑
u∈Nv

Wr(r
t
v � ht−1u ) + br) (8)

where Wr and br are the propagation parameters for
different types of edges (relations). Secondly, we can adapt
different weight matrices for the propagation on different
kinds of edges. When the number of relations is very large,
r-GCN [39] introduces two kinds of regularization to reduce
the number of parameters for modeling amounts of rela-
tions: basis- and block-diagonal-decomposition. With the basis
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Graph Types
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Fig. 2. An overview of variants of graph neural networks.

decomposition, each Wr is defined as follows:

Wr =
B∑
1

arbVb (9)

Here each Wr is a linear combination of basis transforma-
tions Vb ∈ Rdin×dout with coefficients arb. In the block-
diagonal decomposition, r-GCN defines each Wr through
the direct sum over a set of low-dimensional matrices, which
needs more parameters than the first one.

Dynamic Graphs Another variant of graph is dy-
namic graph, which has static graph structure and dy-
namic input signals. To capture both kind of information,
DCRNN [40] and STGCN [41] first collect spatial infor-
mation by GNNs, then feed the outputs into a sequence
model like sequence-to-sequence model or CNNs. Differ-
ently, Structural-RNN [42] and ST-GCN [43] collect spatial
and temporal messages at the same time. They extend
static graph structure with temporal connections so they can
apply traditional GNNs on the extended graphs.

2.2.2 Propagation Types

The propagation step and output step are of vital impor-
tance in the model to obtain the hidden states of nodes
(or edges). As we list below, there are several major mod-
ifications in the propagation step from the original graph
neural network model while researchers usually follow a
simple feed-forward neural network setting in the output
step. The comparison of different variants of GNN could be
found in Table 2. The variants utilize different aggregators to
gather information from each node’s neighbors and specific
updaters to update nodes’ hidden states.

Convolution. There is an increasing interest in general-
izing convolutions to the graph domain. Advances in this
direction are often categorized as spectral approaches and
non-spectral (spatial) approaches.

Spectral approaches work with a spectral representation
of the graphs.

Spectral Network. [45] proposed the spectral network. The
convolution operation is defined in the Fourier domain by
computing the eigendecomposition of the graph Laplacian.
The operation can be defined as the multiplication of a sig-



6

TABLE 2
Different variants of graph neural networks.

Name Variant Aggregator Updater

ChebNet Nk = Tk(L̃)X H =
∑K
k=0 NkΘk

Spectral
Methods

1st-order
model

N0 = X

N1 = D−
1
2 AD−

1
2 X

H = N0Θ0 + N1Θ1

Single
parameter

N = (IN + D−
1
2 AD−

1
2 )X H = NΘ

GCN N = D̃−
1
2 ÃD̃−

1
2 X H = NΘ

Neural FPs htNv
= ht−1v +

∑Nv

k=1 ht−1k htv = σ(htNv
WNv

L )

Non-spectral
Methods

DCNN

Node classification:
N = P∗X

Graph classification:
N = 1TNP∗X/N

H = f (Wc �N)

GraphSAGE htNv
= AGGREGATEt

(
{ht−1u ,∀u ∈ Nv}

)
htv = σ

(
Wt · [ht−1v ‖htNv

]
)

Graph
Attention
Networks

GAT

αvk =
exp(LeakyReLU(aT [Whv‖Whk]))∑

j∈Nv
exp(LeakyReLU(aT [Whv‖Whj ]))

htNv
= σ

(∑
k∈Nv

αvkWhk
)

Multi-head concatenation:

htNv
= ‖M

m=1
σ
(∑

k∈Nv
αmvkW

mhk
)

Multi-head average:
htNv

= σ
(

1
M

∑M
m=1

∑
k∈Nv

αmvkW
mhk

)
htv = htNv

Gated Graph
Neural Net-
works

GGNN htNv
=
∑
k∈Nv

ht−1k + b

ztv = σ(WzhtNv
+ Uzht−1v )

rtv = σ(WrhtNv
+ Urht−1v )

h̃tv = tanh(WhtNv
+ U(rtv � ht−1v ))

htv = (1− ztv)� ht−1v + ztv � h̃tv

Tree LSTM
(Child sum)

htNv
=
∑
k∈Nv

ht−1k

itv = σ(Wixtv + UihtNv
+ bi)

f tvk = σ
(
Wfxtv + Ufht−1k + bf

)
otv = σ(Woxtv + UohtNv

+ bo)
utv = tanh(Wuxtv + UuhtNv

+ bu)
ctv = itv � utv +

∑
k∈Nv

f tvk � ct−1k

htv = otv � tanh(ctv)

Graph LSTM Tree LSTM
(N-ary)

htiNv
=
∑K
l=1 Ui

lh
t−1
vl

htfNvk
=
∑K
l=1 Uf

klh
t−1
vl

htoNv
=
∑K
l=1 Uo

l h
t−1
vl

htuNv
=
∑K
l=1 Uu

l h
t−1
vl

itv = σ(Wixtv + htiNv
+ bi)

f tvk = σ(Wfxtv + htfNvk
+ bf )

otv = σ(Woxtv + htoNv
+ bo)

utv = tanh(Wuxtv + htuNv
+ bu)

ctv = itv � utv +
∑K
l=1 f tvl � ct−1vl

htv = otv � tanh(ctv)

Graph LSTM
in [44]

htiNv
=
∑
k∈Nv

Ui
m(v,k)h

t−1
k

htoNv
=
∑
k∈Nv

Uo
m(v,k)h

t−1
k

htuNv
=
∑
k∈Nv

Uu
m(v,k)h

t−1
k

itv = σ(Wixtv + htiNv
+ bi)

f tvk = σ(Wfxtv + Uf
m(v,k)h

t−1
k + bf )

otv = σ(Woxtv + htoNv
+ bo)

utv = tanh(Wuxtv + htuNv
+ bu)

ctv = itv � utv +
∑
k∈Nv

f tvk � ct−1k

htv = otv � tanh(ctv)
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nal x ∈ RN (a scalar for each node) with a filter gθ =diag(θ)
parameterized by θ ∈ RN :

gθ ? x = Ugθ(Λ)UTx (10)

where U is the matrix of eigenvectors of the normalized
graph Laplacian L = IN −D−

1
2 AD−

1
2 = UΛUT (D is the

degree matrix and A is the adjacency matrix of the graph),
with a diagonal matrix of its eigenvalues Λ.

This operation results in potentially intense computa-
tions and non-spatially localized filters. [46] attempts to
make the spectral filters spatially localized by introducing
a parameterization with smooth coefficients.

ChebNet. [47] suggests that gθ(Λ) can be approximated
by a truncated expansion in terms of Chebyshev polynomi-
als Tk(x) up to Kth order. Thus the operation is:

gθ ? x ≈
K∑
k=0

θkTk(L̃)x (11)

with L̃ = 2
λmax

L − IN . λmax denotes the largest eigen-
value of L. θ ∈ RK is now a vector of Chebyshev coeffi-
cients. The Chebyshev polynomials are defined as Tk(x) =
2xTk−1(x) − Tk−2(x), with T0(x) = 1 and T1(x) = x. It
can be observed that the operation is K-localized since it is
a Kth-order polynomial in the Laplacian. [48] proposed the
ChebNet. It uses this K-localized convolution to define a
convolutional neural network which could remove the need
to compute the eigenvectors of the Laplacian.

GCN. [2] limits the layer-wise convolution operation to
K = 1 to alleviate the problem of overfitting on local
neighborhood structures for graphs with very wide node
degree distributions. It further approximates λmax ≈ 2 and
the equation simplifies to:

gθ′ ?x ≈ θ′0x+θ′1 (L− IN )x = θ′0x−θ′1D−
1
2 AD−

1
2 x (12)

with two free parameters θ′0 and θ′1. After constraining the
number of parameters with θ = θ′0 = −θ′1, we can obtain
the following expression:

gθ ? x ≈ θ
(
IN + D−

1
2 AD−

1
2

)
x (13)

Note that stacking this operator could lead to numer-
ical instabilities and exploding/vanishing gradients, [2]
introduces the renormalization trick: IN + D−

1
2 AD−

1
2 →

D̃−
1
2 ÃD̃−

1
2 , with Ã = A + IN and D̃ii =

∑
j Ãij . Finally,

[2] generalizes the definition to a signal X ∈ RN×C with C
input channels and F filters for feature maps as follows:

Z = D̃−
1
2 ÃD̃−

1
2 XΘ (14)

where Θ ∈ RC×F is a matrix of filter parameters and Z ∈
RN×F is the convolved signal matrix.

All of these models use the original graph structure to
denote relations between nodes. However, there may have
implicit relations between different nodes and the Adaptive
Graph Convolution Network (AGCN) is proposed to learn
the underlying relations [49]. AGCN learns a “residual”
graph Laplacian and add it to the original Laplacian matrix.
As a result, it is proven to be effective in several graph-

structured datasets.

What’s more, [50] presents a Gaussian process-based
Bayesian approach (GGP) to solve the semi-supervised
learning problems. It shows parallels between the model
and the spectral filtering approaches, which could give us
some insights from another perspective.

However, in all of the spectral approaches mentioned
above, the learned filters depend on the Laplacian eigenba-
sis, which depends on the graph structure, that is, a model
trained on a specific structure could not be directly applied
to a graph with a different structure.

Non-spectral approaches define convolutions directly
on the graph, operating on spatially close neighbors. The
major challenge of non-spectral approaches is defining the
convolution operation with differently sized neighborhoods
and maintaining the local invariance of CNNs.

Neural FPs. [51] uses different weight matrices for nodes
with different degrees,

x = ht−1v +

|Nv|∑
i=1

ht−1i

htv = σ
(
xW

|Nv|
t

) (15)

where W
|Nv|
t is the weight matrix for nodes with degree

|Nv| at layer t. And the main drawback of the method is
that it cannot be applied to large-scale graphs with more
node degrees.

DCNN. [23] proposed the diffusion-convolutional neural
networks (DCNNs). Transition matrices are used to define
the neighborhood for nodes in DCNN. For node classifica-
tion, it has

H = f (Wc �P∗X) (16)

where X is an N × F tensor of input features (N is the
number of nodes and F is the number of features). P∗ is an
N×K×N tensor which contains the power series {P,P2, ...,
PK} of matrix P. And P is the degree-normalized transition
matrix from the graphs adjacency matrix A. Each entity
is transformed to a diffusion convolutional representation
which is a K × F matrix defined by K hops of graph
diffusion over F features. And then it will be defined by
a K × F weight matrix and a non-linear activation function
f . Finally H (which is N × K × F ) denotes the diffusion
representations of each node in the graph.

As for graph classification, DCNN simply takes the
average of nodes’ representation,

H = f
(
Wc � 1TNP∗X/N

)
(17)

and 1N here is an N × 1 vector of ones. DCNN can also be
applied to edge classification tasks, which requires convert-
ing edges to nodes and augmenting the adjacency matrix.

DGCN. [52] proposed the dual graph convolutional net-
work (DGCN) to jointly consider the local consistency and
global consistency on graphs. It uses two convolutional net-
works to capture the local/global consistency and adopts an
unsupervised loss to ensemble them. The first convolutional
network is the same as Eq. 14. And the second network re-
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places the adjacency matrix with positive pointwise mutual
information (PPMI) matrix:

H′ = ρ(D
− 1

2

P XPD
− 1

2

P HΘ) (18)

where XP is the PPMI matrix and DP is the diagonal degree
matrix of XP .

PATCHY-SAN. The PATCHY-SAN model [53] extracts
and normalizes a neighborhood of exactly k nodes for each
node. And then the normalized neighborhood serves as the
receptive field for the convolutional operation.

LGCN. LGCN [54] also leverages CNNs as aggregators.
It performs max pooling on nodes’ neighborhood matrices
to get top-k feature elements and then applies 1-D CNN to
compute hidden representations.

MoNet. [22] proposed a spatial-domain model (MoNet)
on non-Euclidean domains which could generalize several
previous techniques. The Geodesic CNN (GCNN) [24] and
Anisotropic CNN (ACNN) [25] on manifolds or GCN [2]
and DCNN [23] on graphs could be formulated as particular
instances of MoNet.

GraphSAGE. [1] proposed the GraphSAGE, a general in-
ductive framework. The framework generates embeddings
by sampling and aggregating features from a node’s local
neighborhood.

htNv
= AGGREGATEt

(
{ht−1u ,∀u ∈ Nv}

)
htv = σ

(
Wt · [ht−1v ‖htNv

]
) (19)

However, [1] does not utilize the full set of neighbors in
Eq.19 but a fixed-size set of neighbors by uniformly sam-
pling. And [1] suggests three aggregator functions.

• Mean aggregator. It could be viewed as an approxi-
mation of the convolutional operation from the trans-
ductive GCN framework [2], so that the inductive
version of the GCN variant could be derived by

htv = σ(W ·MEAN({ht−1v }∪{ht−1u ,∀u ∈ Nv}) (20)

The mean aggregator is different from other aggre-
gators because it does not perform the concatenation
operation which concatenates ht−1v and htNv

in Eq.19.
It could be viewed as a form of “skip connection” [55]
and could achieve better performance.

• LSTM aggregator. [1] also uses an LSTM-based ag-
gregator which has a larger expressive capability.
However, LSTMs process inputs in a sequential man-
ner so that they are not permutation invariant. [1]
adapts LSTMs to operate on an unordered set by
permutating node’s neighbors.

• Pooling aggregator. In the pooling aggregator, each
neighbor’s hidden state is fed through a fully-
connected layer and then a max-pooling operation
is applied to the set of the node’s neighbors.

htNv
= max({σ

(
Wpoolh

t−1
u + b

)
,∀u ∈ Nv}) (21)

Note that any symmetric functions could be used in
place of the max-pooling operation here.

Recently, the structure-aware convolution and Structure-
Aware Convolutional Neural Networks (SACNNs) have

been proposed [56]. Univariate functions are used to per-
form as filters and they can deal with both Euclidean and
non-Euclidean structured data.

Gate. There are several works attempting to use the gate
mechanism like GRU [57] or LSTM [58] in the propagation
step to diminish the restrictions in the former GNN mod-
els and improve the long-term propagation of information
across the graph structure.

[59] proposed the gated graph neural network (GGNN)
which uses the Gate Recurrent Units (GRU) in the prop-
agation step, unrolls the recurrence for a fixed number of
steps T and uses backpropagation through time in order to
compute gradients.

Specifically, the basic recurrence of the propagation
model is

atv =AT
v [h

t−1
1 . . .ht−1N ]T + b

ztv =σ
(
Wzatv + Uzht−1v

)
rtv =σ

(
Wratv + Urht−1v

)
(22)

h̃tv =tanh
(
Watv + U

(
rtv � ht−1v

))
htv =

(
1− ztv

)
� ht−1v + ztv � h̃tv

The node v first aggregates message from its neighbors,
where Av is the sub-matrix of the graph adjacency matrix A
and denotes the connection of node v with its neighbors. The
GRU-like update functions incorporate information from
the other nodes and from the previous timestep to update
each node’s hidden state. a gathers the neighborhood infor-
mation of node v, z and r are the update and reset gates.

LSTMs are also used in a similar way as GRU through
the propagation process based on a tree or a graph.

[60] proposed two extensions to the basic LSTM ar-
chitecture: the Child-Sum Tree-LSTM and the N-ary Tree-
LSTM. Like in standard LSTM units, each Tree-LSTM unit
(indexed by v) contains input and output gates iv and ov ,
a memory cell cv and hidden state hv . Instead of a single
forget gate, the Tree-LSTM unit contains one forget gate fvk
for each child k, allowing the unit to selectively incorporate
information from each child. The Child-Sum Tree-LSTM
transition equations are the following:

h̃t−1v =
∑
k∈Nv

ht−1k

itv = σ
(
Wixtv + Uih̃t−1v + bi

)
f tvk = σ

(
Wfxtv + Ufht−1k + bf

)
otv = σ

(
Woxtv + Uoh̃t−1v + bo

)
(23)

utv = tanh
(
Wuxtv + Uuh̃t−1v + bu

)
ctv = itv � utv +

∑
k∈Nv

f tvk � ct−1k

htv = otv � tanh(ctv)

xtv is the input vector at time t in the standard LSTM setting.

If the branching factor of a tree is at most K and all
children of a node are ordered, i.e., they can be indexed
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from 1 to K , then the N -ary Tree-LSTM can be used. For
node v, htvk and ctvk denote the hidden state and memory
cell of its k-th child at time t respectively. The transition
equations are the following:

itv = σ
(
Wixtv +

K∑
l=1

Ui
lh
t−1
vl + bi

)
f tvk = σ

(
Wfxtv +

K∑
l=1

Uf
klh

t−1
vl + bf

)
otv = σ

(
Woxtv +

K∑
l=1

Uo
l h

t−1
vl + bo

)
(24)

utv = tanh
(
Wuxtv +

K∑
l=1

Uu
l h

t−1
vl + bu

)
ctv = itv � utv +

K∑
l=1

f tvl � ct−1vl

htv = otv � tanh(ctv)

The introduction of separate parameter matrices for each
child k allows the model to learn more fine-grained rep-
resentations conditioning on the states of a unit’s children
than the Child-Sum Tree-LSTM.

The two types of Tree-LSTMs can be easily adapted to
the graph. The graph-structured LSTM in [61] is an example
of the N -ary Tree-LSTM applied to the graph. However, it is
a simplified version since each node in the graph has at most
2 incoming edges (from its parent and sibling predecessor).
[44] proposed another variant of the Graph LSTM based on
the relation extraction task. The main difference between
graphs and trees is that edges of graphs have their labels.
And [44] utilizes different weight matrices to represent
different labels.

itv = σ
(
Wixtv +

∑
k∈Nv

Ui
m(v,k)h

t−1
k + bi

)
f tvk = σ

(
Wfxtv + Uf

m(v,k)h
t−1
k + bf

)
otv = σ

(
Woxtv +

∑
k∈Nv

Uo
m(v,k)h

t−1
k + bo

)
(25)

utv = tanh
(
Wuxtv +

∑
k∈Nv

Uu
m(v,k)h

t−1
k + bu

)
ctv = itv � utv +

∑
k∈Nv

f tvk � ct−1k

htv = otv � tanh(ctv)

where m(v, k) denotes the edge label between node v and
k.

[62] proposed the Sentence LSTM (S-LSTM) for im-
proving text encoding. It converts text into a graph and
utilizes the Graph LSTM to learn the representation. The
S-LSTM shows strong representation power in many NLP
problems. [63] proposed a Graph LSTM network to address
the semantic object parsing task. It uses the confidence-
driven scheme to adaptively select the starting node and
determine the node updating sequence. It follows the same
idea of generalizing the existing LSTMs into the graph-
structured data but has a specific updating sequence while

methods we mentioned above are agnostic to the order of
nodes.

Attention. The attention mechanism has been success-
fully used in many sequence-based tasks such as machine
translation [64]–[66], machine reading [67] and so on. [68]
proposed a graph attention network (GAT) which incorpo-
rates the attention mechanism into the propagation step. It
computes the hidden states of each node by attending over
its neighbors, following a self-attention strategy.

[68] defines a single graph attentional layer and constructs
arbitrary graph attention networks by stacking this layer.
The layer computes the coefficients in the attention mecha-
nism of the node pair (i, j) by:

αij =
exp

(
LeakyReLU

(
aT [Whi‖Whj ]

))∑
k∈Ni

exp (LeakyReLU (aT [Whi‖Whk]))
(26)

where αij is the attention coefficient of node j to i,Ni repre-
sents the neighborhoods of node i in the graph. The input set
of node features to the layer is h = {h1,h2, . . . ,hN},hi ∈
RF , where N is the number of nodes and F is the num-
ber of features of each node, the layer produces a new
set of node features(of potentially different cardinality F ′),
h′ = {h′1,h′2, . . . ,h′N},h′i ∈ RF

′
, as its output. W ∈ RF

′×F

is the weight matrix of a shared linear transformation which
applied to every node, a ∈ R2F ′

is the weight vector of
a single-layer feedforward neural network. It is normalized
by a softmax function and the LeakyReLU nonlinearity(with
negative input slop α = 0.2) is applied.

Then the final output features of each node can be
obtained by (after applying a nonlinearity σ):

h′i = σ

( ∑
j∈Ni

αijWhj

)
(27)

Moreover, the layer utilizes the multi-head attention sim-
ilarly to [66] to stabilize the learning process. It applies K
independent attention mechanisms to compute the hidden
states and then concatenates their features(or computes the
average), resulting in the following two output representa-
tions:

h′i =

K

‖
k=1

σ
( ∑
j∈Ni

αkijW
khj

)
(28)

h′i = σ
( 1

K

K∑
k=1

∑
j∈Ni

αkijW
khj

)
(29)

where αkij is normalized attention coefficient computed by
the k-th attention mechanism.

The attention architecture in [68] has several properties:
(1) the computation of the node-neighbor pairs is paralleliz-
able thus the operation is efficient; (2) it can be applied to
graph nodes with different degrees by specifying arbitrary
weights to neighbors; (3) it can be applied to the inductive
learning problems easily.

Besides GAT, Gated Attention Network (GAAN) [69]
also uses the multi-head attention mechanism. However, it
uses a self-attention mechanism to gather information from
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different heads to replace the average operation of GAT.

Skip connection. Many applications unroll or stack the
graph neural network layer aiming to achieve better results
as more layers (i.e k layers) make each node aggregate more
information from neighbors k hops away. However, it has
been observed in many experiments that deeper models
could not improve the performance and deeper models
could even perform worse [2]. This is mainly because more
layers could also propagate the noisy information from
an exponentially increasing number of expanded neighbor-
hood members.

A straightforward method to address the problem, the
residual network [70], could be found from the computer
vision community. But, even with residual connections,
GCNs with more layers do not perform as well as the 2-
layer GCN on many datasets [2].

[71] proposed a Highway GCN which uses layer-wise
gates similar to highway networks [72]. The output of a
layer is summed with its input with gating weights:

T(ht) = σ
(
Wtht + bt

)
ht+1 = ht+1 �T(ht) + ht � (1−T(ht))

(30)

By adding the highway gates, the performance peaks at
4 layers in a specific problem discussed in [71]. The Column
Network (CLN) proposed in [73] also utilizes the highway
network. But it has different function to compute the gating
weights.

[74] studies properties and resulting limitations of
neighborhood aggregation schemes. It proposed the Jump
Knowledge Network which could learn adaptive, structure-
aware representations. The Jump Knowledge Network se-
lects from all of the intermediate representations (which
”jump” to the last layer) for each node at the last layer,
which makes the model adapt the effective neighborhood
size for each node as needed. [74] uses three approaches
of concatenation, max-pooling and LSTM-attention in the
experiments to aggregate information. The Jump Knowl-
edge Network performs well on the experiments in social,
bioinformatics and citation networks. It could also be com-
bined with models like Graph Convolutional Networks,
GraphSAGE and Graph Attention Networks to improve
their performance.

Hierarchical Pooling. In the area of computer vision, a
convolutional layer is usually followed by a pooling layer
to get more general features. Similar to these pooling layers,
a lot of work focuses on designing hierarchical pooling lay-
ers on graphs. Complicated and large-scale graphs usually
carry rich hierarchical structures which are of great impor-
tance for node-level and graph-level classification tasks.

To explore such inner features, Edge-Conditioned Con-
volution (ECC) [75] designs its pooling module with re-
cursively downsampling operation. The downsampling
method is based on splitting the graph into two components
by the sign of the largest eigenvector of the Laplacian.

DIFFPOOL [76] proposed a learnable hierarchical clus-
tering module by training an assignment matrix in each

layer:

S(l) = softmax(GNNl,pool(A
(l), X(l))) (31)

where X(l) is node features and A(l) is coarsened adjacency
matrix of layer l.

2.2.3 Training Methods

The original graph convolutional neural network has sev-
eral drawbacks in training and optimization methods.
Specifically, GCN requires the full graph Laplacian, which
is computational-consuming for large graphs. Furthermore,
The embedding of a node at layer L is computed recursively
by the embeddings of all its neighbors at layer L − 1.
Therefore, the receptive field of a single node grows expo-
nentially with respect to the number of layers, so computing
gradient for a single node costs a lot. Finally, GCN is trained
independently for a fixed graph, which lacks the ability for
inductive learning.

Sampling. GraphSAGE [1] is a comprehensive improve-
ment of original GCN. To solve the problems mentioned
above, GraphSAGE replaced full graph Laplacian with
learnable aggregation functions, which are key to perform
message passing and generalize to unseen nodes. As shown
in Eq.19, they first aggregate neighborhood embeddings,
concatenate with target node’s embedding, then propagate
to the next layer. With learned aggregation and propagation
functions, GraphSAGE could generate embeddings for un-
seen nodes. Also, GraphSAGE uses neighbor sampling to
alleviate receptive field expansion.

PinSage [77] proposed importance-based sampling
method. By simulating random walks starting from target
nodes, this approach chooses the top T nodes with the
highest normalized visit counts.

FastGCN [78] further improves the sampling algorithm.
Instead of sampling neighbors for each node, FastGCN
directly samples the receptive field for each layer. FastGCN
uses importance sampling, which the importance factor is
calculated as below:

q(v) ∝ 1

|Nv|
∑
u∈Nv

1

|Nu|
(32)

In contrast to fixed sampling methods above, [79] in-
troduces a parameterized and trainable sampler to perform
layer-wise sampling conditioned on the former layer. Fur-
thermore, this adaptive sampler could find optimal sam-
pling importance and reduce variance simultaneously.

Following reinforcement learning, SSE [80] proposed
Stochastic Fixed-Point Gradient Descent for GNN training.
This method views embedding update as value function
and parameter update as value function. While training,
the algorithm will sample nodes to update embeddings and
sample labeled nodes to update parameters alternately.

Receptive Field Control. [81] proposed a control-variate
based stochastic approximation algorithms for GCN by
utilizing the historical activations of nodes as a control
variate. This method limits the receptive field in the 1-
hop neighborhood, but use the historical hidden state as
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an affordable approximation.

Data Augmentation. [82] focused on the limitations of
GCN, which include that GCN requires many additional la-
beled data for validation and also suffers from the localized
nature of the convolutional filter. To solve the limitations,
the authors proposed Co-Training GCN and Self-Training
GCN to enlarge the training dataset. The former method
finds the nearest neighbors of training data while the latter
one follows a boosting-like way.

Unsupervised Training. GNNs are typically used for
supervised or semi-supervised learning problems. Recently,
there has been a trend to extend auto-encoder (AE) to graph
domains. Graph auto-encoders aim at representing nodes
into low-dimensional vectors by an unsupervised training
manner.

Graph Auto-Encoder (GAE) [83] first uses GCNs to
encode nodes in the graph. Then it uses a simple decoder
to reconstruct the adjacency matrix and computes the loss
from the similarity between the original adjacency matrix
and the reconstructed matrix.

Z = GCN(X,A)

Ã = ρ(ZZT )
(33)

[83] also trains the GAE model in a variational manner
and the model is named as the variational graph auto-
encoder (VGAE). Furthermore, Berg et al. use GAE in rec-
ommender systems and have proposed the graph convolu-
tional matrix completion model (GC-MC) [84], which out-
performs other baseline models on the MovieLens dataset.

Adversarially Regularized Graph Auto-encoder
(ARGA) [85] employs generative adversarial networks
(GANs) to regularize a GCN-based graph auto-encoder to
follow a prior distribution. There are also several graph
auto-encoders such as NetRA [86], DNGR [87], SDNE [88]
and DRNE [89], however, they don’t use GNNs in their
framework.

2.3 General Frameworks

Apart from different variants of graph neural networks, sev-
eral general frameworks are proposed aiming to integrate
different models into one single framework. [27] proposed
the message passing neural network (MPNN), which uni-
fied various graph neural network and graph convolutional
network approaches. [28] proposed the non-local neural
network (NLNN). It unifies several “self-attention”-style
methods [66], [68], [90]. [30] proposed the graph network
(GN) which unified the MPNN and NLNN methods as well
as many other variants like Interaction Networks [4], [91],
Neural Physics Engine [92], CommNet [93], structure2vec
[7], [94], GGNN [59], Relation Network [95], [96], Deep Sets
[97] and Point Net [98].

2.3.1 Message Passing Neural Networks

[27] proposed a general framework for supervised learn-
ing on graphs called Message Passing Neural Networks
(MPNNs). The MPNN framework abstracts the common-
alities between several of the most popular models for

graph-structured data, such as spectral approaches [45] [2],
[48] and non-spectral approaches [51] in graph convolution,
gated graph neural networks [59], interaction networks [4],
molecular graph convolutions [99], deep tensor neural net-
works [100] and so on.

The model contains two phases, a message passing
phase and a readout phase. The message passing phase
(namely, the propagation step) runs for T time steps and is
defined in terms of message function Mt and vertex update
function Ut. Using messages mt

v , the updating functions of
hidden states htv are as follows:

mt+1
v =

∑
w∈Nv

Mt

(
htv,h

t
w, evw

)
ht+1
v = Ut

(
htv,m

t+1
v

) (34)

where evw represents features of the edge from node v to w.
The readout phase computes a feature vector for the whole
graph using the readout function R according to

ŷ = R({hTv |v ∈ G}) (35)

where T denotes the total time steps. The message function
Mt, vertex update function Ut and readout functionR could
have different settings. Hence the MPNN framework could
generalize several different models via different function
settings. Here we give an example of generalizing GGNN,
and other models’ function settings could be found in [27].
The function settings for GGNNs are:

Mt

(
htv,h

t
w, evw

)
= Aevw

htw

Ut = GRU
(
htv,m

t+1
v

)
(36)

R =
∑
v∈V

σ
(
i(hTv ,h

0
v)
)
�
(
j(hTv )

)
where Aevw is the adjacency matrix, one for each edge label
e. The GRU is the Gated Recurrent Unit introduced in [57].
i and j are neural networks in function R.

2.3.2 Non-local Neural Networks

[28] proposed the Non-local Neural Networks (NLNN)
for capturing long-range dependencies with deep neural
networks. The non-local operation is a generalization of
the classical non-local mean operation [101] in computer
vision. A non-local operation computes the response at a
position as a weighted sum of the features at all positions.
The set of positions can be in space, time or spacetime.
Thus the NLNN can be viewed as a unification of different
“self-attention”-style methods [66], [68], [90]. We will first
introduce the general definition of non-local operations and
then some specific instantiations.

Following the non-local mean operation [101], the
generic non-local operation is defined as:

h′i =
1

C(h)
∑
∀j
f(hi,hj)g(hj) (37)

where i is the index of an output position and j is the index
that enumerates all possible positions. f(hi,hj) computes
a scalar between i and j representing the relation between
them. g(hj) denotes a transformation of the input hj and a
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factor 1
C(h) is utilized to normalize the results.

There are several instantiations with different f and g
settings. For simplicity, [28] uses the linear transformation
as the function g. That means g(hj) = Wghj , where Wg is a
learned weight matrix. Next we list the choices for function
f in the following.

Gaussian. The Gaussian function is a natural choice
according to the non-local mean [101] and bilateral filters
[102]. Thus:

f(hi,hj) = eh
T
i hj (38)

Here hTi hj is dot-product similarity and C(h) =∑
∀j f(hi,hj).

Embedded Gaussian. It is straightforward to extend the
Gaussian function by computing similarity in the embed-
ding space, which means:

f(hi,hj) = eθ(hi)
Tφ(hj) (39)

where θ(hi) = Wθhi, φ(hj) = Wφhj and C(h) =∑
∀j f(hi,hj).

It could be found that the self-attention proposed
in [66] is a special case of the Embedded Gaussian
version. For a given i, 1

C(h)f(hi,hj) becomes the soft-
max computation along the dimension j. So that h′ =
softmax(hTWT

θ Wφh)g(h), which matches the form of self-
attention in [66].

Dot product. The function f can also be implemented as
a dot-product similarity:

f(hi,hj) = θ(hi)
Tφ(hj). (40)

Here the factor C(h) = N , where N is the number of
positions in h.

Concatenation. Here we have:

f(hi,hj) = ReLU(wT
f [θ(hi)‖φ(hj)]). (41)

where wf is a weight vector projecting the vector to a scalar
and C(h) = N .

[28] wraps the non-local operation mentioned above
into a non-local block as:

zi = Wzh
′
i + hi, (42)

where h′i is given in Eq.37 and “+hi” denotes the residual
connection [70]. Hence the non-local block could be insert
into any pre-trained model, which makes the block more
applicable.

2.3.3 Graph Networks

[30] proposed the Graph Network (GN) framework which
generalizes and extends various graph neural network,
MPNN and NLNN approaches [27], [28], [33]. We first
introduce the graph definition in [30] and then we describe
the GN block, a core GN computation unit, and its compu-
tational steps, and finally we will introduce its basic design
principles.

Graph definition. In [30], a graph is defined as a 3-tuple
G = (u, H,E) (here we use H instead of V for notation’s

consistency). u is a global attribute, H = {hi}i=1:Nv is the
set of nodes (of cardinality Nv), where each hi is a node’s
attribute. E = {(ek, rk, sk)}k=1:Ne is the set of edges (of
cardinality Ne), where each ek is the edge’s attribute, rk is
the index of the receiver node and sk is the index of the
sender node.

GN block. A GN block contains three “update” func-
tions, φ, and three “aggregation” functions, ρ,

e′k = φe (ek,hrk ,hsk ,u)

h′i = φh (ē′i,hi,u)

u′ = φu
(
ē′, h̄′,u

)
ē′i = ρe→h (E′i)

ē′ = ρe→u (E′)

h̄′ = ρh→u (H ′)

(43)

where E′i = {(e′k, rk, sk)}rk=i, k=1:Ne , H ′ = {h′i}i=1:Nv ,
and E′ =

⋃
iE
′
i = {(e′k, rk, sk)}k=1:Ne . The ρ functions

must be invariant to permutations of their inputs and
should take variable numbers of arguments.

Computation steps. The computation steps of a GN
block are as follows:

1) φe is applied per edge, with arguments
(ek,hrk ,hsk ,u), and returns e′k. The set of
resulting per-edge outputs for each node
i is, E′i = {(e′k, rk, sk)}rk=i, k=1:Ne . And
E′ =

⋃
iE
′
i = {(e′k, rk, sk)}k=1:Ne is the set

of all per-edge outputs.
2) ρe→h is applied to E′i, and aggregates the edge

updates for edges that project to vertex i, into ē′i,
which will be used in the next step’s node update.

3) φh is applied to each node i, to compute an updated
node attribute, h′i. The set of resulting per-node
outputs is, H ′ = {h′i}i=1:Nv .

4) ρe→u is applied to E′, and aggregates all edge
updates, into ē′, which will then be used in the next
step’s global update.

5) ρh→u is applied to H ′, and aggregates all node
updates, into h̄′, which will then be used in the next
step’s global update.

6) φu is applied once per graph and computes an
update for the global attribute, u′.

Note here the order is not strictly enforced. For example,
it is possible to proceed from global, to per-node, to per-
edge updates. And the φ and ρ functions need not be neural
networks though in this paper we only focus on neural
network implementations.

Design Principles. The design of Graph Network based
on three basic principles: flexible representations, config-
urable within-block structure and composable multi-block
architectures.

• Flexible representations. The GN framework sup-
ports flexible representations of the attributes as well
as different graph structures. The global, node and
edge attributes can use arbitrary representational
formats but real-valued vectors and tensors are most
common. One can simply tailor the output of a GN
block according to specific demands of tasks. For
example, [30] lists several edge-focused [103], [104],
node-focused [3], [4], [92], [105] and graph-focused [4],
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[27], [96] GNs. In terms of graph structures, the
framework can be applied to both structural scenar-
ios where the graph structure is explicit and non-
structural scenarios where the relational structure
should be inferred or assumed.

• Configurable within-block structure. The functions
and their inputs within a GN block can have different
settings so that the GN framework provides flex-
ibility in within-block structure configuration. For
example, [104] and [3] use the full GN blocks. Their
φ implementations use neural networks and their ρ
functions use the elementwise summation. Based on
different structure and functions settings, a variety of
models (such as MPNN, NLNN and other variants)
could be expressed by the GN framework. And more
details could be found in [30].

• Composable multi-block architectures. GN blocks
could be composed to construct complex architec-
tures. Arbitrary numbers of GN blocks could be com-
posed in sequence with shared or unshared param-
eters. [30] utilizes GN blocks to construct an encode-
process-decode architecture and a recurrent GN-based
architecture. These architectures are demonstrated
in Fig. 3. Other techniques for building GN based
architectures could also be useful, such as skip con-
nections, LSTM- or GRU-style gating schemes and so
on.

3 APPLICATIONS

Graph neural networks have been explored in a wide range
of problem domains across supervised, semi-supervised,
unsupervised and reinforcement learning settings. In this
section, we simply divide the applications in three scenarios:
(1) Structural scenarios where the data has explicit relational
structure, such as physical systems, molecular structures
and knowledge graphs; (2) Non-structural scenarios where
the relational structure is not explicit include image, text, etc;
(3) Other application scenarios such as generative models
and combinatorial optimization problems. Note that we
only list several representative applications instead of pro-
viding an exhaustive list. The summary of the applications
could be found in Table 3.

3.1 Structural Scenarios

In the following subsections, we will introduce GNN’s
applications in structural scenarios, where the data are
naturally performed in the graph structure. For example,
GNNs are widely being used in social network predic-
tion [1], [2], traffic prediction [71], [144], recommender sys-
tems [77], [84] and graph representation [76]. Specifically, we
are discussing how to model real-world physical systems
with object-relationship graphs, how to predict chemical
properties of molecules and biological interaction properties
of proteins and the methods of reasoning about the out-of-
knowledge-base(OOKB) entities in knowledge graphs.

3.1.1 Physics

Modeling real-world physical systems is one of the most
basic aspects of understanding human intelligence. By rep-
resenting objects as nodes and relations as edges, we can
perform GNN-based reasoning about objects, relations, and
physics in a simplified but effective way.

[4] proposed Interaction Networks to make predictions
and inferences about various physical systems. The model
takes objects and relations as input, reasons about their
interactions, and applies the effects and physical dynamics
to predict new states. They separately model relation-centric
and object-centric models, making it easier to generalize
across different systems. In CommNet [93], interactions
are not modeled explicitly. Instead, an interaction vector
is obtained by averaging all other agents’ hidden vectors.
VAIN [90] further introduced attentional methods into agent
interaction process, which preserves both the complexity
advantages and computational efficiency as well.

Visual Interaction Networks [91] could make predictions
from pixels. It learns a state code from two consecutive input
frames for each object. Then, after adding their interaction
effect by an Interaction Net block, the state decoder converts
state codes to next step’s state.

[3] proposed a Graph Network based model which
could either perform state prediction or inductive inference.
The inference model takes partially observed information
as input and constructs a hidden graph for implicit system
classification.

3.1.2 Chemistry and Biology

Molecular Fingerprints Calculating molecular fingerprints,
which means feature vectors that represent moleculars, is
a core step in computer-aided drug design. Conventional
molecular fingerprints are hand-made and fixed. By ap-
plying GNN to molecular graphs, we can obtain better
fingerprints.

[51] proposed neural graph fingerprints which calculate sub-
structure feature vectors via GCN and sum to get overall
representation. The aggregation function is

htNv
=

∑
u∈N (v)

CONCAT(htu, euv) (44)

Where euv is the edge feature of edge (u, v). Then update
node representation by

ht+1
v = σ(W

deg(v)
t htNv

) (45)

Where deg(v) is the degree of node v and WN
t is a learned

matrix for each time step t and node degree N .

[99] further explicitly models atom and atom pairs
independently to emphasize atom interactions. It introduces
edge representation etuv instead of aggregation function, i.e.
htNv

=
∑
u∈N (v) etuv . The node update function is

ht+1
v = ReLU(W1(ReLU(W0h

t
u),h

t
Nv

)) (46)
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TABLE 3
Applications of graph neural networks.

Area Application Algorithm Deep Learning Model References

Text

Text classification

GCN Graph Convolutional Network
[1], [23], [48]
[2], [22], [46]

GAT Graph Attention Network [68]
DGCNN Graph Convolutional Network [106]
Text GCN Graph Convolutional Network [107]
Sentence LSTM Graph LSTM [62]

Sequence Labeling (POS, NER) Sentence LSTM Graph LSTM [62]
Sentiment classification Tree LSTM Graph LSTM [60]
Semantic role labeling Syntactic GCN Graph Convolutional Network [108]

Neural machine translation Syntactic GCN Graph Convolutional Network [109], [110]
GGNN Gated Graph Neural Network [38]

Relation extraction
Tree LSTM Graph LSTM [111]
Graph LSTM Graph LSTM [44], [112]
GCN Graph Convolutional Network [113]

Event extraction Syntactic GCN Graph Convolutional Network [114], [115]

AMR to text generation Sentence LSTM Graph LSTM [116]
GGNN Gated Graph Neural Network [38]

Multi-hop reading comprehension Sentence LSTM Graph LSTM [117]

Relational reasoning
RN MLP [96]
Recurrent RN Recurrent Neural Network [118]
IN Graph Neural Network [4]

Image

Social Relationship Understanding GRM Gated Graph Neural Network [119]

Image classification

GCN Graph Convolutional Network [120], [121]
GGNN Gated Graph Neural Network [122]
DGP Graph Convolutional Network [35]
GSNN Gated Graph Neural Network [123]

Visual Question Answering GGNN Gated Graph Neural Network [119], [124], [125]
Object Detection RN Graph Attention Network [126], [127]

Interaction Detection GPNN Graph Neural Network [128]
Structural-RNN Graph Neural Network [42]

Region Classification GCNN Graph CNN [129]

Semantic Segmentation

Graph LSTM Graph LSTM [63], [130]
GGNN Gated Graph Neural Network [131]
DGCNN Graph CNN [132]
3DGNN Graph Neural Network [133]

Science

Physics Systems
IN Graph Neural Network [4]
VIN Graph Neural Network [91]
GN Graph Networks [3]

Molecular Fingerprints NGF Graph Convolutional Network [51]
GCN Graph Convolutional Network [99]

Protein Interface Prediction GCN Graph Convolutional Network [5]
Side Effects Prediction Decagon Graph Convolutional Network [134]
Disease Classification PPIN Graph Convolutional Network [135]

Knowledge
Graph

KB Completion GNN Graph Neural Network [6]
KG Alignment GCN Graph Convolutional Network [136]

Combinatorial Optimization

structure2vec Graph Convolutional Network [7]
GNN Graph Neural Network [137]
GCN Graph Convolutional Network [138]
AM Graph Attention Network [139]

Graph Generation

NetGAN Long short-term memory [140]
GraphRNN Rucurrent Neural Network [137]
Regularizing VAE Variational Autoencoder [141]
GCPN Graph Convolutional Network [142]
MolGAN Relational-GCN [143]
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(a) Sequential GN blocks (b) Encode-process-decode (c) Recurrent GN blocks

Fig. 3. Examples of architectures composed by GN blocks. (a) The sequential processing architecture; (b) The encode-process-decode architecture;
(c) The recurrent architecture.

(a) physics (b) molecule

(c) image (d) text

(e) social network (f) generation

Fig. 4. Application Scenarios

while the edge update function is

et+1
uv = ReLU(W4(ReLU(W2e

t
uv),ReLU(W3(h

t
v,h

t
u))))

(47)

Protein Interface Prediction [5] focused on the task
named protein interface prediction, which is a challenging
problem with important applications in drug discovery
and design. The proposed GCN based method respectively
learns ligand and receptor protein residue representation
and merges them for pairwise classification.

GNN can also be used in biomedical engineering. With

Protein-Protein Interaction Network, [135] leverages graph
convolution and relation network for breast cancer subtype
classification. [134] also suggests a GCN based model for
polypharmacy side effects prediction. Their work models
the drug and protein interaction network and separately
deals with edges in different types.

3.1.3 Knowledge graph

[6] utilizes GNNs to solve the out-of-knowledge-base
(OOKB) entity problem in knowledge base completion
(KBC). The OOKB entities in [6] are directly connected to
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the existing entities thus the embeddings of OOKB entities
can be aggregated from the existing entities. The method
achieves satisfying performance both in the standard KBC
setting and the OOKB setting.

[136] utilizes GCNs to solve the cross-lingual knowledge
graph alignment problem. The model embeds entities from
different languages into a unified embedding space and
aligns them based on the embedding similarity.

3.2 Non-structural Scenarios

In this section we will talk about applications on non-
structural scenarios such as image, text, programming
source code [59], [145] and multi-agent systems [90], [93],
[103]. We will only give detailed introduction to the first
two scenarios due to the length limit. Roughly, there are two
ways to apply the graph neural networks on non-structural
scenarios: (1) Incorporate structural information from other
domains to improve the performance, for example using in-
formation from knowledge graphs to alleviate the zero-shot
problems in image tasks; (2) Infer or assume the relational
structure in the scenario and then apply the model to solve
the problems defined on graphs, such as the method in [62]
which models text into graphs.

3.2.1 Image

Image Classification Image classification is a very basic
and important task in the field of computer vision, which
attracts much attention and has many famous datasets
like ImageNet [146]. Recent progress in image classifica-
tion benefits from big data and the strong power of GPU
computation, which allows us to train a classifier without
extracting structural information from images. However,
zero-shot and few-shot learning become more and more
popular in the field of image classification, because most
models can achieve similar performance with enough data.
There are several works leveraging graph neural networks
to incorporate structural information in image classification.
First, knowledge graphs can be used as extra information to
guide zero-short recognition classification [35], [121]. [121]
builds a knowledge graph where each node corresponds to
an object category and takes the word embeddings of nodes
as input for predicting the classifier of different categories.
As over-smoothing effect happens with the deep depth of
convolution architecture, the 6-layer GCN used in [121]
would wash out much useful information in the representa-
tion. To solve the smoothing problem in the propagation of
GCN, [35] managed to use single layer GCN with a larger
neighborhood which includes both one-hop and multi-hops
nodes in the graph. And it proved effective in building a
zero-shot classifier with existing ones.

Except for the knowledge graph, the similarity between
images in the dataset is also helpful for the few-shot learning
[120]. [120] proposed to build a weighted full-connected
image network based on the similarity and do message
passing in the graph for few-shot recognition. As most
knowledge graphs are large for reasoning, [123] selects some
related entities to build a sub-graph based on the result of
object detection and applies GGNN to the extracted graph

for prediction. Besides, [122] proposed to construct a new
knowledge graph where the entities are all the categories.
And, they defined three types of label relations: super-
subordinate, positive correlation, and negative correlation
and propagate the confidence of labels in the graph directly.

Visual Reasoning Computer-vision systems usually
need to perform reasoning by incorporating both spatial and
semantic information. So it is natural to generate graphs for
reasoning tasks.

A typical visual reasoning task is visual question answer-
ing(VQA), [124] respectively constructs image scene graph
and question syntactic graph. Then it applies GGNN to train
the embeddings for predicting the final answer. Despite
spatial connections among objects, [147] builds the rela-
tional graphs conditioned on the questions. With knowledge
graphs, [119], [125] could perform finer relation exploration
and more interpretable reasoning process.

Other applications of visual reasoning include object
detection, interaction detection, and region classification. In
object detection [126], [127], GNNs are used to calculate
RoI features; In interaction detection [42], [128], GNNs are
message passing tools between human and objects; In region
classification [129], GNNs perform reasoning on graphs
which connects regions and classes.

Semantic Segmentation Semantic segmentation is a cru-
cial step toward image understanding. The task here is to
assign a unique label (or category) to every single pixel in
the image, which can be considered as a dense classification
problem. However, regions in images are often not grid-like
and need non-local information, which leads to the failure
of traditional CNN. Several works utilized graph-structured
data to handle it.

[63] proposed Graph-LSTM to model long-term de-
pendency together with spatial connections by building
graphs in form of distance-based superpixel map and ap-
plying LSTM to propagate neighborhood information glob-
ally. Subsequent work improved it from the perspective of
encoding hierarchical information [130].

Furthermore, 3D semantic segmentation (RGBD seman-
tic segmentation) and point clouds classification utilize
more geometric information and therefore are hard to model
by a 2D CNN. [133] constructs a K nearest neighbors (KNN)
graph and uses a 3D GNN as propagation model. After
unrolling for several steps, the prediction model takes the
hidden state of each node as input and predict its semantic
label.

As there are always too many points, [131] solved large-
scale 3D point clouds segmentation by building superpoint
graphs and generating embeddings for them. To classify
supernodes, [131] leverages GGNN and graph convolution.

[132] proposed to model point interactions through
edges. They calculate edge representation vectors by feeding
the coordinates of its terminal nodes. Then node embed-
dings are updated by edge aggregation.
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3.2.2 Text

The graph neural networks could be applied to several tasks
based on texts. It could be applied to both sentence-level
tasks(e.g. text classification) as well as word-level tasks(e.g.
sequence labeling). We will introduce several major applica-
tions on text in the following.

Text classification Text classification is an important and
classical problem in natural language processing. The classi-
cal GCN models [1], [2], [22], [23], [46], [48] and GAT model
[68] are applied to solve the problem, but they only use
the structural information between the documents and they
don’t use much text information. [106] proposed a graph-
CNN based deep learning model to first convert texts to
graph-of-words, and then use graph convolution operations
in [53] to convolve the word graph. [62] proposed the
Sentence LSTM to encode text. It views the whole sentence
as a single state, which consists of sub-states for individual
words and an overall sentence-level state. It uses the global
sentence-level representation for classification tasks. These
methods either view a document or a sentence as a graph
of word nodes or rely on the document citation relation to
construct the graph. [107] regards the documents and words
as nodes to construct the corpus graph (hence heteroge-
neous graph) and uses the Text GCN to learn embeddings
of words and documents. Sentiment classification could also
be regarded as a text classification problem and a Tree-LSTM
approach is proposed by [60].

Sequence labeling As each node in GNNs has its hidden
state, we can utilize the hidden state to address the sequence
labeling problem if we consider every word in the sentence
as a node. [62] utilizes the Sentence LSTM to label the
sequence. It has conducted experiments on POS-tagging and
NER tasks and achieves promising performance.

Semantic role labeling is another task of sequence label-
ing. [108] proposed a Syntactic GCN to solve the problem.
The Syntactic GCN which operates on the direct graph with
labeled edges is a special variant of the GCN [2]. It integrates
edge-wise gates which let the model regulate contributions
of individual dependency edges. The Syntactic GCNs over
syntactic dependency trees are used as sentence encoders to
learn latent feature representations of words in the sentence.
[108] also reveals that GCNs and LSTMs are functionally
complementary in the task.

Neural machine translation The neural machine trans-
lation task is usually considered as a sequence-to-sequence
task. [66] introduces the attention mechanisms and replaces
the most commonly used recurrent or convolutional layers.
In fact, the Transformer assumes a fully connected graph
structure between linguistic entities.

One popular application of GNN is to incorporate
the syntactic or semantic information into the NMT task.
[109] utilizes the Syntactic GCN on syntax-aware NMT
tasks. [110] incorporates information about the predicate-
argument structure of source sentences (namely, semantic-
role representations) using Syntactic GCN and compares
the results of incorporating only syntactic or semantic in-
formation or both of the information into the task. [38]
utilizes the GGNN in syntax-aware NMT. It converts the

syntactic dependency graph into a new structure called the
Levi graph by turning the edges into additional nodes and
thus edge labels can be represented as embeddings.

Relation extraction Extracting semantic relations be-
tween entities in texts is an important and well-studied task.
Some systems treat this task as a pipeline of two separated
tasks, named entity recognition and relation extraction. [111]
proposed an end-to-end relation extraction model by using
bidirectional sequential and tree-structured LSTM-RNNs.
[113] proposed an extension of graph convolutional net-
works that is tailored for relation extraction and applied a
pruning strategy to the input trees.

Cross-sentence N-ary relation extraction detects relations
among n entities across multiple sentences. [44] explores a
general framework for cross-sentence n-ary relation extrac-
tion based on graph LSTMs. It splits the input graph into
two DAGs while important information could be lost in
the splitting procedure. [112] proposed a graph-state LSTM
model. It keeps the original graph structure and speeds up
computation by allowing more parallelization.

Event extraction Event extraction is an important in-
formation extraction task to recognize instances of speci-
fied types of events in texts. [114] investigates a convolu-
tional neural network (which is the Syntactic GCN exactly)
based on dependency trees to perform event detection.
[115] proposed a Jointly Multiple Events Extraction (JMEE)
framework to jointly extract multiple event triggers and
arguments by introducing syntactic shortcut arcs to enhance
information flow to attention-based graph convolution net-
works to model graph information.

Other applications GNNs could also be applied to
many other applications. There are several works focus on
the AMR to text generation task. A Sentence-LSTM based
method [116] and a GGNN based method [38] have been
proposed in this area. [60] uses the Tree LSTM to model the
semantic relatedness of two sentences. And [117] exploits
the Sentence LSTM to solve the multi-hop reading compre-
hension problem. Another important direction is relational
reasoning, relational networks [96], interaction networks [4]
and recurrent relational networks [118] are proposed to
solve the relational reasoning task based on text. The works
cited above are not an exhaustive list, and we encourage
our readers to find more works and application domains of
graph neural networks that they are interested in.

3.3 Other Scenarios

Besides structural and non-structural scenarios, there are
some other scenarios where graph neural networks play
an important role. In this subsection, we will introduce
generative graph models and combinatorial optimization
with GNNs.

3.3.1 Generative Models

Generative models for real-world graphs has drawn signifi-
cant attention for its important applications including mod-
eling social interactions, discovering new chemical struc-
tures, and constructing knowledge graphs. As deep learning
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methods have powerful ability to learn the implicit distribu-
tion of graphs, there is a surge in neural graph generative
models recently.

NetGAN [140] is one of the first work to build neural
graph generative model, which generates graphs via ran-
dom walks. It transformed the problem of graph generation
to the problem of walk generation which takes the random
walks from a specific graph as input and trains a walk
generative model using GAN architecture. While the gen-
erated graph preserves important topological properties of
the original graph, the number of nodes is unable to change
in the generating process, which is as same as the original
graph. GraphRNN [148] managed to generate the adjacency
matrix of a graph by generating the adjacency vector of
each node step by step, which can output required networks
having different numbers of nodes.

Instead of generating adjacency matrix sequentially,
MolGAN [143] predicts discrete graph structure (the adja-
cency matrix) at once and utilizes a permutation-invariant
discriminator to solve the node variant problem in the
adjacency matrix. Besides, it applies a reward network for
RL-based optimization towards desired chemical proper-
ties. What’s more, [141] proposed constrained variational
autoencoders to ensure the semantic validity of generated
graphs. And, GCPN [142] incorporated domain-specific
rules through reinforcement learning.

[149] proposed a model which generates edges and
nodes sequentially and utilizes a graph neural network to
extract the hidden state of the current graph which is used
to decide the action in the next step during the sequential
generative process.

3.3.2 Combinatorial Optimization

Combinatorial optimization problems over graphs are set
of NP-hard problems which attract much attention from
scientists of all fields. Some specific problems like travel-
ing salesman problem (TSP) and minimum spanning trees
(MST) have got various heuristic solutions. Recently, using
a deep neural network for solving such problems has been
a hotspot, and some of the solutions further leverage graph
neural network because of their graph structure.

[150] first proposed a deep-learning approach to tackle
TSP. Their method consists of two parts: a Pointer Net-
work [151] for parameterizing rewards and a policy gradi-
ent [152] module for training. This work has been proved
to be comparable with traditional approaches. However,
Pointer Networks are designed for sequential data like texts,
while order-invariant encoders are more appropriate for
such work.

[153] and [139] improved the above method by includ-
ing graph neural networks. The former work first obtain
the node embeddings from structure2vec [94] then feed
them into a Q-learning module for making decisions. The
latter one builds an attention-based encoder-decoder sys-
tem. By replacing reinforcement learning module with a
attention-based decoder, it is more efficient for training.
These work achieved better performance than previous al-

gorithms, which proved the representation power of graph
neural networks.

[137] focused on Quadratic Assignment Problem i.e.
measuring the similarity of two graphs. The GNN based
model learns node embeddings for each graph indepen-
dently and matches them using attention mechanism.
This method offers intriguingly good performance even in
regimes where standard relaxation-based techniques appear
to suffer.

4 OPEN PROBLEMS

Although GNNs have achieved great success in different
fields, it is remarkable that GNN models are not good
enough to offer satisfying solutions for any graph in any
condition. In this section, we will state some open problems
for further researches.

Shallow Structure Traditional deep neural networks can
stack hundreds of layers to get better performance, because
deeper structure has more parameters, which improve the
expressive power significantly. However, graph neural net-
works are always shallow, most of which are no more than
three layers. As experiments in [82] show, stacking multiple
GCN layers will result in over-smoothing, that is to say, all
vertices will converge to the same value. Although some
researchers have managed to tackle this problem [59], [82],
it remains to be the biggest limitation of GNN. Designing
real deep GNN is an exciting challenge for future research,
and will be a considerable contribution to the understanding
of GNN.

Dynamic Graphs Another challenging problem is how
to deal with graphs with dynamic structures. Static graphs
are stable so they can be modeled feasibly, while dynamic
graphs introduce changing structures. When edges and
nodes appear or disappear, GNN can not change adaptively.
Dynamic GNN is being actively researched on and we
believe it to be a big milestone about the stability and
adaptability of general GNN.

Non-Structural Scenarios Although we have discussed
the applications of GNN on non-structural scenarios, we
found that there is no optimal methods to generate graphs
from raw data. In image domain, some work utilizes CNN
to obtain feature maps then upsamples them to form su-
perpixels as nodes [63], while other ones directly leverage
some object detection algorithms to get object nodes. In
text domain [129], some work employs syntactic trees as
syntactic graphs while others adopt fully connected graphs.
Therefore, finding the best graph generation approach will
offer a wider range of fields where GNN could make contri-
bution.

Scalability How to apply embedding methods in web-
scale conditions like social networks or recommendation
systems has been a fatal problem for almost all graph em-
bedding algorithms, and GNN is not an exception. Scaling
up GNN is difficult because many of the core steps are
computational consuming in big data environment. There
are several examples about this phenomenon: First, graph
data are not regular Euclidean, each node has its own
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neighborhood structure so batches can not be applied. Then,
calculating graph Laplacian is also unfeasible when there
are millions of nodes and edges. Moreover, we need to point
out that scaling determines whether an algorithm is able to
be applied into practical use. Several work has proposed
their solutions to this problem [77] and we are paying close
attention to the progress.

5 CONCLUSION

Over the past few years, graph neural networks have be-
come powerful and practical tools for machine learning
tasks in graph domain. This progress owes to advances in
expressive power, model flexibility, and training algorithms.
In this survey, we conduct a comprehensive review of graph
neural networks. For GNN models, we introduce its variants
categorized by graph types, propagation types, and training
types. Moreover, we also summarize several general frame-
works to uniformly represent different variants. In terms
of application taxonomy, we divide the GNN applications
into structural scenarios, non-structural scenarios, and other
scenarios, then give a detailed review for applications in
each scenario. Finally, we suggest four open problems indi-
cating the major challenges and future research directions of
graph neural networks, including model depth, scalability,
the ability to deal with dynamic graphs and non-structural
scenarios.
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